International Journal of Applied Mathematics & A International Academy of Science,

Statistical Sciences (IJAMSS) 5

ISSN(P): 2319-3972; ISSN(E): 2319-3980 ‘ ) Engineering and Technology

Vol. 4, Issue 3, Apr - May 2015, 15-28 Connecting Rescarchers: Nurturing Innovations
© IASET IASET g g

NUMERICAL SOLUTION OF SIXTH ORDER BOUNDARY VALUE PR OBLEMS BY
PETROV-GALERKIN METHOD WITH QUINTIC B-SPLINES AS BA SIS FUNCTIONS

AND SEPTIC B-SPLINES AS WEIGHT FUNCTIONS

K. N. S. KASI VISWANADHAM & S. M. REDDY

Department of Mathematics, National Institute oEfimology, Warangal, Hyderabad, Telangana, India

ABSTRACT

In this paper a finite element method involvingrBetGalerkin method with quintic B-splines as bdsisctions
and septic B-splines as weight functions has beseldped to solve a general sixth order boundalyevaroblem with a
particular case of boundary conditions. The basistions are redefined into a new set of basistfons which vanish on
the boundary where the Dirichlet and the Neumape ©yf boundary conditions are prescribed. The vidigfctions are
also redefined into a new set of weight functiomgaly in number match with the number of redefinadi® functions. The
proposed method was applied to solve several exengilsixth order linear and nonlinear boundary&giroblems. The

obtained numerical results were found to be in gagréement with the exact solutions available éliterature.

KEYWORDS: Absolute Error, Petrov — Galerk in Method, QuirieSpline, Septic B-Spline, Sixth Order Boundary

Value Problem
INTRODUCTION

In this paper, we consider a general sixth oradeai boundary value problem

a(NYO(A+a(3 P 3+ & X PO £ Y )% )X) .
ra,(9y(3*+a(IYx=bx & x d

subject to boundary conditions
¥(©)=Ao, y(d)=Co. Y'(C)=Ay, Y'(d) =Cy, ¥'(C) =A, y'(d) =C, (2)

whereA,, Co, A, Ci, Ay, C, are finite real constants amg(x), a;(X), ax(x), as(x), as(x), as(x), as(x) andb(x) are all
continuous functions defined on the intenald].

The sixth order boundary value problems occur tnopéiysics [1]. Chandrasekhar [2] determined thhémvan
infinite horizontal layer of fluid is heated fromelow and is under the action of rotation, instépiets in. When this
instability is as ordinary convection, the ordinaifferential equation is sixth order. The existerand uniqueness of the
solution for these types of problems have beerudised in Agarwal [3]. Finding the analytical sadat of such type of
boundary value problems in general is not possifleer the years, many researchers have worked xih-agider
boundary value problems by using different meth@msnumerical solutions. Wazwaz [4] developed tlodution of
special type of sixth order boundary value problémgsusing the modified Adomian decomposition mettaodl he

provided the solution in the form of a rapidly cengent series. Huan [5] presented variational apgrdechnique to solve
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a special case of sixth order boundary value probléNoor et al. [6] presented the variational tieraprinciple to solve a
special case of sixth order boundary value problafter transforming the given differential equatioto a system of
integral equations. Ghazala and Siddiqi [7] presetihe solution of a special case of sixth ordemdary value problems
by using non-polynomial spline functions. Siddigiaé [8], Siddigi and Ghazala [9] developed quirgpline funtions and
septic spline functions techniques to solve a spemse of linear sixth order boundary value proislaespectively.
Lamnii et al. [10], kasi viswanadham and Showriur§]l1l] developed septic spline collocation and taiB-spline

collocation method are used to solve sixth ordamiary value problems respectively. Loghmani andnAdiinia [12]

used sixth degree B-spline functions to constructapproximation solution for sixth order boundalue problems.
Waleed [13] presented Adomian decomposition metiwitth Green's function to solve a special case athsorder

boundary value problems. Kasi Viswanadham and Murahna [14] developed septic B-spline Collocatimethod to

solve a special case of sixth order boundary vpleblems. Kasi Viswanadham and Sreenivasulu [18¢ld@ed quintic

B-spline Galerkin method to solve a general sixttieo boundary value problems. So far, sixth ordewrfolary value
problems have not been solved by using Petrov-t@alenethod with quintic B-splines as basis functicend septic
B-splines as weight functions. This motivated usstdve a sixth order boundary value problem by rBerGalerkin

method with quintic B-splines as basis functionsl aaxtic B-splines as weight functions. The sohlutio a nonlinear
problem has been obtained as the limit of a sequehaolution of linear problems generated by thasilinearization

technique [16]. Finally, in the last section, tlimclusions are presented.

JUSTIFICATION FOR USING PETROV-GALERKIN METHOD

In Finite Element Method (FEM) the approximate $iolu can be written as a linear combination of ®asi
functions which constitute a basis for the appr@tion space under consideration. FEM involves taral methods like
Rayleigh Ritz method, Galerkin method, Least Squanethod, Petrov-Galerkin method and Collocatiothoe etc. In
Petrov-Galerkin method, the residual of approxioratis made orthogonal to the weight functions. Wi use
Petrov-Galerkin method, a weak form of approximasolution for a given differential equation exiated is unique under
appropriate conditions [17, 18] irrespective of ggdies of a given differential operator. Furtheryeak solution also
tends to a classical solution of given differenéigliation, provided sufficient attention is giverthe boundary conditions
[19]. That means the basis functions should vaaishhe boundary where the Dirichlet type of bougdaonditions are
prescribed and also the number of weight functghrmuld match with the number of basis functionsadéein this paper
we employed the use of Petrov-Galerkin method wiitic B-splines as basis functions and septipliss as weight

functions to approximate the solution of sixth ardeundary value problem.

DESCRIPTION OF THE METHOD
Definition of Quintic B-Splines and Septic B-Spline

The quintic B-splines and septic B-splines arerdafiin [20-22]. The existence of quintic splinesiolate )
to a function in a closed interval, [d] for spaced knots (need not be evenly spaced)pafréitionc = Xy < X; <...< X1 <
xn= d is established by constructing it. The constructbg(x) is done with the help of the quintic B-splinestréduce ten

additional knotscs, X4, X3, X2, X1, Xn+1; Xn+2: Xn+3, Xn+4 8NAX045 iN SUCh a way that

X5<X4<X3<X2<X.1<X0 AN Xn<Xn+1<Xn+2<Xn+3<Xn+4<Xn+5.

Now the quintic B-splinedB; (X)'s are defined by
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R
B(X) =1 m(x)
0, otherwise

XD[X—@ X+3]

(x,—%)°, if x =x

here —Xi=
" =% {o, if X, < x

i+3

and 7109 = [ (¢~ %)

r=i-3

where B.2(x), Bi(X), By(x), Bu(X),....B.1(X), By(X), Bira(X), Bir2(X)} forms a basis for the spa&(7) of quintic
polynomial splines. Schoenberg [22] has proved dqlattic B-splines are the unique nonzero splinfesnuallest compact

support with the knots at
X5<X4<X3<X 2K 1 <X p<X 1< L X1 <K <X +1<Xn+2<Xn+3<Xn+4<Xn+5:

In a similar analogue septic B-spling¢x)'s are defined by

$ X=X g
ROY=1 20 7y X TDhee Xl

0, otherwise

(x,=%)7, ifx=x

here —XZ=
" =% {O, if x, <X

i+4

and () = [] (x~ %)

r=i-4
where R3(x), Rx(X), Ri(X), R(X), R(X),...,R1(X), R(X), R+1(X), Rs2(X), R3(X)} forms a basis for the
spaceS,(lT) of septic polynomial splines with the introductioh four more additional knot&;, X, Xy+e X+7 1O the
already existing knotgs to x,.s. Schoenberg [22] has proved that septic B-splaresthe unique nonzero splines o
smallest compact support with the knots at

X7<X <X 5K <X 3K 2<X 1 <X p<X1<. . . <X 1 <X <X n+1<Xn+2<X+3<Xn+4<X n+5< X n+6<Xn+7-

To solve the boundary value problem (1) subjedidondary conditions (2) by the Petrov-Galerkin rodtfwvith

quintic B-splines as basis functions and septipl3ies as weight functions, we define the approxiomafor y(x) as

n+2

y(¥=> a,B(% 3)

j=2

where o;'s are the nodal parameters to be determined Bi0J’s are quintic B-spline basis functions. In
Petrov-Galerkin method, the basis functions showddish on the boundary where the Dirichlet typebolndary
conditions are specified. In the set of quintic @irees {B.x(x), Bi(X), By(X), Bi(X),...,B.1(X), B\(X), Br+1(X), B+2(X)}, the
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basis functionB.»(x), B1(x), By(X), Bi(X), Bx(X), B.aX), Bi.1(X), B:(X), B.+1(X) and Bh.x(x) do not vanish at one of the
boundary points. So, there is a necessity of raggfithe basis functions into a new set of bagigtions which vanish on

the boundary where the Dirichlet type of boundawgditions are specified. When the chosen approximaatisfies the

prescribed boundary conditions or most of the bama@onditions, it gives better approximation résuln view of this,

the basis functions are redefined into a new sdtagfs functions which vanish on the boundary witleeeDirichlet and

Neumann type of boundary conditions are prescribed.procedure for redefining of the basis funci@nas follows.

Using the definition of quintic B-splines, the @ihlet and the Neumann boundary conditions of (2),get the

approximate solution at the boundary points as

A=Y(9=¥x%) = a B(¥

j=2

n+2

Co=y(d)=¥%x)= > a,B(x

j=n-2

A=Y(9=y(x)=> a B(Y)

=2

n+2

C,=y(d)=y(x)= D a B(¥

Eliminatinga.,, 0.1, a,+1 ando,., from the equations (3) to (7), we get

j=n-2

Y= wR+Y @, Q(3

where
w(x) = w(p+ AT p g, GoWR) p
—1( ) n+1( )
= A) B C
W)= g s B B
P (- P'((‘))) P(¥, =012
Q;(¥X=4P(X, j=3,4,...n- 3
P (¥~ P'((’“)) P (%, j=n-2.nm1in
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B; (%) -
B, (X) - B,(%, =-1,0,1,2
(X B, (%) ,(% J
P(X=1B(%, j=3,4,..n— 3 (12)
000~ 28 .00, -z mian

The new set of basis functions in the approximagiod is {Q;(x), j=0,1,...,n}. Herew(x) takes care of given set
of Dirichlet and Neumann type boundary conditiond &;(x)'s and its first order derivatives vanish on thermary. In
Petrov-Galerkin method, the number of basis fumstion the approximation should match with the numtfeweight
functions. Here the number of basis functions mdpproximation foy(x) defined in (8) isn+1 , where as the number of
weight functions i+7. So, there is a need to redefine the weighttions into a new set of weight functions which in
number match with the number of basis function® piocedure for redefining the weight functionasgollows:

Let us write the approximation fefx) as

n+3
V(=) BR(} (13)

=3

where R(x)'s are septic B-splines and here we assume thateadoproximationv(x) satisfies corresponding

homogeneous boundary conditions of the given bayndanditions (2). That meangx) defined in (13) satisfies the
conditions

V(©=0,Yd)=0,v(g=0,¥(d= 0,V (g= 0, (d | 144

Applying the boundary conditions (14) to (13), vt the approximate solution at the boundary pasts

Q= ux)= j:i_gﬂj R(¥)=0 15)
V()= (%) = iﬂj R(¥)=0 16)
V(9= V(%)= jiﬂ,— R()=0 @
V(d)=V(x) = jiﬂj R()=0 a8)
V(9 =V(%)= jiﬂ,— R()=0 9
V() = V(%) = jiﬂj R()=0 0)
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Eliminating 3.3, B2, B-1, Br+1 Br+2 @ndBn.z from the equations (13) and (15) to (20), wetbetapproximation
for v(x) as

V=Y Y (9 @
where
T'(%) .
T.(X) - T.(¥%, j=012,3
(%) T (%) (X, ]
V(%) =1T (R, j=4,5,...n—- 4 (22)
Tj(x)—_:;,j;(();)) Tu(®, j=n-3n=2,n-1r
S (%) .
S (X- S,( X -1,0,1,2,3
(X S, (%) (% F
T.(9=45(3, j=4,5,..,n 4 (23)
S()é_ S;()s) $+2( X’ F n'sxn'z,ﬁ'l,nl"r:
: Sr’1+2()$1)
R (%) .
R (X - R.( %, =-2,-1,0,1,2,3
(%) R.(%) :( % j
S (¥=4 R(¥, F4,5,...n 4 (24)
R.(x)—MR+3(>), EFr3 2, nrl,nrl R
: R1+3()§1)

Now the new set of weight functions for the appnmiionv(x) is {V;(x), j=0,1,...,n}. HereV,(x)'s and its first
and second order derivatives vanish on the boundary

Applying the Petrov-Galerkin method to (1) with thew set of basis function€{(x), j=0, 1,..., n} and the new
set of weight functions\(x), j=0,1,...,n}, we get

%
[l 3+ a(X PO+ g ) PO LXYO)% L) XE) K@ XY
%

(25)
Xy
+3(Q YOIV X dx=f bX\ )x dor i=0, 1,...,n.
%

Integrating by parts the first two terms on the eind side of (25) and after applying the boundamyditions
prescribed in (2), we get

x“ao(x)wx)y“(»dﬁ—fdg[a(xx )8 9+fd3[@>xi(/)}< ZAX“L’A &) xV)]x ") x (26)
dxe n dx % dx
X0 X0
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j a(YV(R ¥ (3 de - j BT Oy = (27)

Substituting (26) and (27) in (25) and using th@ragimation fory(x) given in (8), and after rearranging the

terms for resulting equations, we get a systengjof#ons in the matrix form as
Aa =B (28)

where

A=[y];

a =] {az(»V(xQ<4>(><+a(w)xp()x[ [damc/)* dxg[ @) x) b
+a4(x)\4(x)]q< 3+ a( XM X Q x+ & >xiv>x,-co )X dx
for i=0,1,...,n; j|=0,1, ..n, (29)

B =[b];

b f {OIVOX A xNOx W )% ?)X(\/)XV(/)#*[ (3 XV]* [ (2 kY]x
+2, YV (R W( X+ gV (I W( 3+ a( X M )<W<)}}d><+ [ao(X)V(>9] C,- [an(X)\((&]XO A

fori=0, 1, ... n. (30)
and a=[a,aq,..a].
PROCEDURE TO FIND THE SOLUTION FOR NODAL PARAMETERS

A typical integral element in the matrif is

n-1

2l

m=0

where I, = J'::“ v (x)rj (x)Z(x)dx and rj (X) are the quintic B-spline basis functions or thigrivatives.V, (X)
are the septic B-spline weight functions or theireridatives. It may be noted that, = 0 Iif
(%41 %44) 0 (X3 %,3) N (%, %,,)=0. To evaluate eadh,, we employed 7-point Gauss-Legendre quadraturatftar.

Thus the stiffness matriyd is a thirteen diagonal band matrix. The nodal patar vector@ has been obtained from the
system Aa =B using the band matrix solution package. We haseduthe FORTRAN-90 program to solve the
boundary value problems (1) - (2) by the proposethod.

NUMERICAL RESULTS

To demonstrate the applicability of the proposezthod for solving the sixth order boundary valuebpems of
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22 K. N. S. Kasi Viswanadham & S. M. Reddy

the type (1) and (2), we considered three linead three nonlinear boundary value problems. Thaioétl numerical

results for each problem are presented in tabatang and compared with the exact solutions availabthe literature.

Example 1: Consider the linear boundary value problem

y& -4y 42y + xy=(5+2x X)&, 0< x1 (31)
subject to

y(0)=1 y@= 0,y (OF 0y F-e,y (OF- 1Ly (IF- 2

The exact solution for the above problemyis= (1— X) €".

The proposed method is tested on this problem where domain [0, 1] is divided into 10 equal stbiaals.
The obtained numerical results for this problem gineen in Table 1. The maximum absolute error otadiby the
proposed method is 1.382828%10

Table 1: Numerical Results for Example 1

X | Absolute Error by the Proposed Method
0.1 1.192093E-07
0.2 3.278255E-06
0.3 8.404255E-06
0.4 1.186132E-05
0.5 1.382828E-05
0.6 1.275539E-05
0.7 8.046627E-06
0.8 3.367662E-06
0.9 1.341105E-07

Example 2: Consider the linear boundary value problem

v+ y® tsinx Y+ xy= (2+sind Y&, K X (32)
subject to

y0)=1y®=e,y(0)=1ydF ey OF LY @F «

The exact solution for the above problemyis= €".

The proposed method is tested on this problem where domain [0, 1] is divided into 10 equal stbiaals.
The obtained numerical results for this problem giren in Table 2. The maximum absolute error iole@ by the
proposed method is 1.716614%10

Table 2: Numerical Results for Example 2

X Absolute Error by the Proposed Method
0.1 1.311302E-06
0.2 9.536743E-07
0.3 4.768372E-07
0.4 1.072884E-06
0.5 7.510185E-06
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Table 2: Contd.,

0.6 1.549721E-05
0.7 1.716614E-05
0.8 1.406670E-05
0.9 9.775162E-06

Example 3: Consider the linear boundary value problem
YO +y"+y - y=(-15¥%+ 78x 114)8* , &K X : (33)

subject to
1 2 . 1

The exact solution for the above problemyis= e,

The proposed method is tested on this problem witere domain [0, 1] is divided into 10 equabimtervals.
The obtained numerical results for this problem gineen in Table 3. The maximum absolute error otadi by the
proposed method is 2.533197510

Table 3: Numerical Results for Example 3

X Absolute Error by the Proposed Method
0.1 3.114110E-08
0.2 1.401640E-07
0.3 1.527369E-07
0.4 3.352761E-08
0.5 9.238720E-07
0.6 2.115965E-06
0.7 2.533197E-06
0.8 2.190471E-06
0.9 1.639128E-06

Example 4: Consider the nonlinear boundary value problem
y(6)+e—xy2 =& + 6% 0< x1 (34)

subject to
1 -1 , . 1

The exact solution for the above problemys= € .

The nonlinear boundary value problem (34) is cotegkinto a sequence of linear boundary value proble

generated by quasilinearization technique [16] as
y((g’)fl) +2e” Xn) ¥n+1) = e n) + e —e?x, A 0’1' 2’ ' (35)

subject to
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1 1. , 1
Yin1) (O) =0, Yine1) (1): E ) y(n+1) (O): -1 Y(ml) (l): __e Yine 1) (0): 1a%n+ 1) (1;: _e

Herey.y) is the 0+1)" approximation fory(X). The domain [0, 1] is divided into 10 equal subintls and the

proposed method is applied to the sequence ofrlipezblems (35). The obtained numerical resultstifiis problem are

presented in Table 4. The maximum absolute errtinéd by the proposed method is 2.563000%10

Table 4: Numerical Results for Example 4

X Absolute Error by the Proposed Method
0.1 7.748604E-07
0.2 4.768372E-07
0.3 1.132488E-06
0.4 8.940697E-07
0.5 1.490116E-06
0.6 2.563000E-06
0.7 2.413988E-06
0.8 1.728535E-06
0.9 1.102686E-06

Example 5: Consider the nonlinear boundary value problem
yO& +y'y® — Bsin(rxX) y' + W'+ my?=-1° cosgrx), 0< x<1 (36)

subject to

y(0)=1,y®)=-1y (0F 0y (Ir Oy (O5-7 Yy (B
The exact solution for the above problemys= COS(7X ).

The nonlinear boundary value problem (36) is coteekinto a sequence of linear boundary value proble

generated by quasilinearization technique [16] as

Y((Sil) + y('n) (21) — 7 sin(7rx) j'r;u) * Y )'(ml) + n)) Yr’rl) @7)
2T Yy + Vi) Vi) = Yoo Yin * 77 Yoo + Yo Y9 ~7°c0S(T) n=012..

subject to
Y1 0)=1, Yinen) ®=-1 y(n+1) (OF O1Y(n+l) L O’Y(’ni-l) Oy -m* ’y('nr 1) (1F

Herey.1 is the 6+1)" approximation fory(X). The domain [0, 1] is divided into 10 equal subiwtds and the

proposed method is applied to the sequence ofrlipgblems (37). The obtained numerical resultstiiis problem are
presented in Table 5. The maximum absolute errtindéd by the proposed method is 3.288842x10

Table 5: Numerical Results for Example 5

X Absolute Error by the Proposed Method
0.1 4.172325E-07
0.2 9.536743E-06
0.3 2.193451E-05
0.4 3.221631E-05

Impact Factor (JCC): 2.0346 NAAS Rating.19
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Table 5: Contd.,

0.5 3.288842E-05
0.6 2.413988E-05
0.7 1.323223E-05
0.8 3.933907E-06
0.9 7.748604E-07

Example 6: Consider the nonlinear boundary value problem
y® —20e3% = -40(1+ x)®, 0< X< : (38)
subject to

v0=0y0=""2 yo=1, yarl y -1y ar- L

In(1+ x)

The exact solution for the above problemyis=

The nonlinear boundary value problem (38) is coteekinto a sequence of linear boundary value proble

generated by quasilinearization technique [16] as
y&, +720e°0 y = 7206° y + 206 - 40@ x§ , = 0,12, (39)

subject to

Yinsa (0)=0, Yine1) (1)_ n2 y(n+l) (O)_ y(n+1) (1): y(lm 1) (OF - _]6- y'f* 1) r-—

Hereyp.q is the 0+1)" approximation fory(x). The domain [0, 1] is divided into 10 equal subimals and the
proposed method is applied to the sequence ofrlipezblems (39). The obtained numerical resultstiiis problem are
presented in Table 6. The maximum absolute errtindéd by the proposed method is 6.780028%10

Table 6: Numerical Results for Example 6

X Absolute Error by the Proposed Method Proposed Methd
0.1 1.303852E-08
0.2 1.676381E-08
0.3 6.705523E-08
0.4 1.192093E-07
0.5 3.725290E-07
0.6 6.780028E-07
0.7 6.854534E-07
0.8 5.066395E-07
0.9 3.427267E-07

CONCLUSIONS

In this paper, we have employed a Petrov-Galerkathiod with quintic B-splines as basis functions aagtic
B-splines as weight functions to solve a genergthsorder boundary value problems with special cas®oundary
conditions. The quintic B-spline basis set has besgiefined into a new set of basis functions whielmish on the

boundary where the Dirichlet and the Neumann bogndanditions are prescribed. The septic B-splaw@sredefined into
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a new set of weight functions which in number matehnumber of redefined set of basis functiong ploposed method

has been tested on three linear and three nonlangarorder boundary value problems. The numeriesilits obtained by

the proposed method are in good agreement withekaet solutions available in the literature. Theergjth of the

proposed method lies in its easy applicability umate and efficient to solve sixth order boundaaue problems.
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