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ABSTRACT 

In this paper a finite element method involving Petrov-Galerkin method with quintic B-splines as basis functions 

and septic B-splines as weight functions has been developed to solve a general sixth order boundary value problem with a 

particular case of boundary conditions. The basis functions are redefined into a new set of basis functions which vanish on 

the boundary where the Dirichlet and the Neumann type of boundary conditions are prescribed. The weight functions are 

also redefined into a new set of weight functions which in number match with the number of redefined basis functions. The 

proposed method was applied to solve several examples of sixth order linear and nonlinear boundary value problems. The 

obtained numerical results were found to be in good agreement with the exact solutions available in the literature. 

KEYWORDS : Absolute Error, Petrov – Galerk in Method, Quintic B-Spline, Septic B-Spline, Sixth Order Boundary 

Value Problem 

INTRODUCTION  

In this paper, we consider a general sixth order linear boundary value problem 
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subject to boundary conditions 

y(c)=A0, y(d)=C0, ( )y c′ = A1, ( )y d′  = C1, ( )y c′′ =A2, ( )y d′′ =C2                                             (2) 

where A0, C0, A1, C1,  A2, C2  are finite real constants and a0(x), a1(x), a2(x), a3(x), a4(x), a5(x), a6(x) and b(x) are all 

continuous functions defined on the interval [c, d]. 

The sixth order boundary value problems occur in astrophysics [1]. Chandrasekhar [2] determined that when an 

infinite horizontal layer of fluid is heated from below and is under the action of rotation, instability sets in. When this 

instability is as ordinary convection, the ordinary differential equation is sixth order. The existence and uniqueness of the 

solution for these types of problems have been discussed in Agarwal [3]. Finding the analytical solutions of such type of 

boundary value problems in general is not possible. Over the years, many researchers have worked on sixth-order 

boundary value problems by using different methods for numerical solutions. Wazwaz [4] developed the solution of 

special type of sixth order boundary value problems by using the modified Adomian decomposition method and he 

provided the solution in the form of a rapidly convergent series. Huan [5] presented variational approach technique to solve 
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a special case of sixth order boundary value problems. Noor et al. [6] presented the variational iteration principle to solve a 

special case of sixth order boundary value problems after transforming the given differential equation into a system of 

integral equations. Ghazala and Siddiqi [7] presented the solution of a special case of sixth order boundary value problems 

by using non-polynomial spline functions. Siddiqi et al. [8], Siddiqi and Ghazala [9] developed quintic spline funtions and 

septic spline functions techniques to solve a special case of linear sixth order boundary value problems respectively. 

Lamnii et al. [10], kasi viswanadham and Showri raju [11] developed septic spline collocation and quintic B-spline 

collocation method are used to solve sixth order boundary value problems respectively. Loghmani and Ahmadinia [12] 

used sixth degree B-spline functions to construct an approximation solution for sixth order boundary value problems. 

Waleed [13] presented Adomian decomposition method with Green's function to solve a special case of sixth order 

boundary value problems. Kasi Viswanadham and Murali krishna [14] developed septic B-spline Collocation method to 

solve a special case of sixth order boundary value problems. Kasi Viswanadham and Sreenivasulu [15] developed quintic 

B-spline Galerkin method to solve a general sixth order boundary value problems. So far, sixth order boundary value 

problems have not been solved by using Petrov-Galerkin method with quintic B-splines as basis functions and septic            

B-splines as weight functions. This motivated us to solve a sixth order boundary value problem by Pertrov-Galerkin 

method with quintic B-splines as basis functions and sextic B-splines as weight functions. The solution to a nonlinear 

problem has been obtained as the limit of a sequence of solution of linear problems generated by the quasilinearization 

technique [16]. Finally, in the last section, the conclusions are presented. 

JUSTIFICATION FOR USING PETROV-GALERKIN METHOD 

In Finite Element Method (FEM) the approximate solution can be written as a linear combination of basis 

functions which constitute a basis for the approximation space under consideration. FEM involves variational methods like 

Rayleigh Ritz method, Galerkin method, Least Squares method, Petrov-Galerkin method and Collocation method etc. In 

Petrov-Galerkin method, the residual of approximation is made orthogonal to the weight functions. When we use             

Petrov-Galerkin method, a weak form of approximation solution for a given differential equation exists and is unique under 

appropriate conditions [17, 18] irrespective of properties of a given differential operator. Further, a weak solution also 

tends to a classical solution of given differential equation, provided sufficient attention is given to the boundary conditions 

[19]. That means the basis functions should vanish on the boundary where the Dirichlet type of boundary conditions are 

prescribed and also the number of weight functions should match with the number of basis functions. Hence in this paper 

we employed the use of Petrov-Galerkin method with quintic B-splines as basis functions and septic B-splines as weight 

functions to approximate the solution of sixth order boundary value problem. 

DESCRIPTION OF THE METHOD 

Definition of Quintic B-Splines and Septic B-Splines 

The quintic B-splines and septic B-splines are defined in [20-22]. The existence of quintic spline interpolate s(x) 

to a function in a closed interval [c, d] for spaced knots (need not be evenly spaced) of a partition c = x0 < x1 <…< xn-1 < 

xn= d is established by constructing it. The construction of s(x) is done with the help of the quintic B-splines. Introduce ten 

additional knots x-5, x-4, x-3, x-2, x-1, xn+1, xn+2, xn+3, xn+4 and xn+5 in such a way that 

x-5<x-4<x-3<x-2<x-1<x0  and  xn<xn+1<xn+2<xn+3<xn+4<xn+5. 

Now the quintic B-splines sxBi )'(  are defined by 
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where {B-2(x), B-1(x), B0(x), B1(x),…,Bn-1(x), Bn(x), Bn+1(x), Bn+2(x)} forms a basis for the space S5(π) of quintic 

polynomial splines. Schoenberg [22] has proved that quintic B-splines are the unique nonzero splines of smallest compact 

support with the knots at 

x-5<x-4<x-3<x-2<x-1<x0<x1<…<xn-1<xn<xn+1<xn+2<xn+3<xn+4<xn+5. 

In a similar analogue septic B-splines Ri(x)'s are defined by 
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where {R-3(x), R-2(x), R-1(x), R0(x), R1(x),…,Rn-1(x), Rn(x), Rn+1(x), Rn+2(x), Rn+3(x)} forms a basis for the 

space 7( )S π  of septic polynomial splines with the introduction of four more additional knots x-7, x-6, xn+6, xn+7   to the 

already existing knots x-5 to xn+5.  Schoenberg [22] has proved that septic B-splines are the unique nonzero splines of 

smallest compact support with the knots at 

x-7<x-6<x-5<x-4<x-3<x-2<x-1<x0<x1<…<xn-1<xn<xn+1<xn+2<xn+3<xn+4<xn+5<xn+6<xn+7. 

To solve the boundary value problem (1) subject to boundary conditions (2) by the Petrov-Galerkin method with 

quintic B-splines as basis functions and septic B-splines as weight functions, we define the approximation for y(x) as 

2

2

( ) ( )
n

j j
j

y x B xα
+

=−

=∑                (3) 

where αj’s are the nodal parameters to be determined and Bj(x)’s are quintic B-spline basis functions. In              

Petrov-Galerkin method, the basis functions should vanish on the boundary where the Dirichlet type of boundary 

conditions are specified. In the set of quintic B-splines {B-2(x), B-1(x), B0(x), B1(x),…,Bn-1(x), Bn(x), Bn+1(x), Bn+2(x)}, the 



18                                                                                                                                                                         K. N. S. Kasi Viswanadham & S. M. Reddy 

 
Impact Factor (JCC): 2.0346                                                                                                                   NAAS Rating: 3.19 

basis functions B-2(x), B-1(x), B0(x), B1(x), B2(x), Bn-2(x), Bn-1(x), Bn(x), Bn+1(x) and Bn+2(x) do not vanish at one of the 

boundary points. So, there is a necessity of redefining the basis functions into a new set of basis functions which vanish on 

the boundary where the Dirichlet type of boundary conditions are specified. When the chosen approximation satisfies the 

prescribed boundary conditions or most of the boundary conditions, it gives better approximation results. In view of this, 

the basis functions are redefined into a new set of basis functions which vanish on the boundary where the Dirichlet and 

Neumann type of boundary conditions are prescribed. The procedure for redefining of the basis functions is as follows. 

Using the definition of quintic B-splines, the Dirichlet and the Neumann boundary conditions of (2), we get the 

approximate solution at the boundary points as 

2
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Eliminating α-2, α-1, αn+1  and αn+2 from the equations (3) to (7), we get 
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The new set of basis functions in the approximation y(x) is {Qj(x), j=0,1,…,n}. Here w(x) takes care of given set 

of Dirichlet and Neumann type boundary conditions and Qj(x)'s and its first order derivatives vanish on the boundary. In 

Petrov-Galerkin method, the number of basis functions in the approximation should match with the number of weight 

functions. Here the number of basis functions in the approximation for y(x) defined in (8) is  n+1 , where as the number of 

weight functions is n+7. So, there is a need to redefine the weight functions into a new set of weight functions which in 

number match with the number of basis functions. The procedure for redefining the weight functions is as follows: 

Let us write the approximation for v(x) as 
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where Rj(x)'s are septic B-splines and here we assume that above approximation v(x) satisfies corresponding 

homogeneous boundary conditions of the given boundary conditions (2). That means v(x) defined in (13) satisfies the 

conditions 
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Applying the boundary conditions (14) to (13), we get the approximate solution at the boundary points as 
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Eliminating β-3, β-2, β-1,  βn+1,  βn+2  and βn+3  from the equations (13) and (15) to (20), we get the approximation 

for v(x) as 

0
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Now the new set of weight functions for the approximation v(x) is {Vj(x), j=0,1,…,n}. Here Vj(x)’s and its first 

and second order derivatives vanish on the boundary. 

Applying the Petrov-Galerkin method to (1) with the new set of basis functions {Qj (x), j=0, 1,…, n} and the new 

set of weight functions {Vj(x), j=0,1,…,n},  we get 
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Integrating by parts the first two terms on the left hand side of (25) and after applying the boundary conditions 

prescribed in (2), we get 
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Substituting (26) and (27) in (25) and using the approximation for y(x) given in (8), and after rearranging the 

terms for resulting equations, we get a system of equations in the matrix form as 

α =A B                             (28) 
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PROCEDURE TO FIND THE SOLUTION FOR NODAL PARAMETERS  

A typical integral element in the matrix A  is 
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x

m i jx
I xv r x Z x dx

+= ∫  and ( )jr x  are the quintic B-spline basis functions or their derivatives. ( )iv x  

are the septic B-spline weight functions or their derivatives. It may be noted that Im = 0 if 

4 4 3 3 1( , ) ( , ) ( , )i i j j m mx x x x x x− + − + +∩ ∩ = ∅ . To evaluate eachmI , we employed 7-point Gauss-Legendre quadrature formula. 

Thus the stiffness matrix A  is a thirteen diagonal band matrix. The nodal parameter vector α  has been obtained from the 

system α =A B   using the band matrix solution package. We have used the FORTRAN-90 program to solve the 

boundary value problems (1) - (2) by the proposed method. 

NUMERICAL RESULTS 

 To demonstrate the applicability of the proposed method for solving the sixth order boundary value problems of 
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the type (1) and (2), we considered three linear  and three nonlinear boundary value problems. The obtained numerical 

results for each problem are presented in tabular forms and compared with the exact solutions available in the literature. 

Example 1: Consider the linear boundary value problem 

(6) (4) 22 (5 2 ) , 0 14 xy y y xy x x e x′′+ + = + − < <−          (31) 

subject to 

(0) 1, (1) 0, (0) 0, (1) , (0) 1, (1) 2 .y y y y e y y e′ ′ ′′ ′′= = = = − = − = −  

The exact solution for the above problem is (1 ) .xy x e= −  

The proposed method is tested on this problem where the   domain [0, 1] is divided into 10 equal subintervals.                 

The obtained numerical results for this problem are given in Table 1. The maximum absolute error obtained by the 

proposed method is 1.382828x10-5. 

Table 1: Numerical Results for Example 1 

x Absolute Error by the Proposed Method 
0.1 1.192093E-07  
0.2 3.278255E-06 
0.3 8.404255E-06 
0.4 1.186132E-05 
0.5 1.382828E-05 
0.6 1.275539E-05  
0.7 8.046627E-06  
0.8 3.367662E-06  
0.9 1.341105E-07 

 
Example 2: Consider the linear boundary value problem 

(6) (5) (4)sin (2 sin ) , 0 1xy y x y xy x x e x+ + + = + + < <         (32) 

subject to 

(0) 1, (1) , (0) 1, (1) , (0) 1, (1) .y y e y y e y y e′ ′ ′′ ′′= = = = = =  

The exact solution for the above problem is xy e= . 

The proposed method is tested on this problem where the   domain [0, 1] is divided into 10 equal subintervals.  

The obtained numerical results for this problem are given in  Table 2. The maximum absolute error obtained by the 

proposed method is 1.716614x10-5. 

Table 2: Numerical Results for Example 2 

x Absolute Error by the Proposed Method 
0.1 1.311302E-06 
0.2 9.536743E-07 
0.3 4.768372E-07 
0.4 1.072884E-06 
0.5 7.510185E-06 
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Table 2: Contd., 
0.6 1.549721E-05 
0.7 1.716614E-05 
0.8 1.406670E-05 
0.9 9.775162E-06 

 
Example 3: Consider the linear boundary value problem 

(6) 2( 15 78 114) , 0 1xy y y y x x e x−′′′ ′′+ + − = − + − < <                                                      (33) 

subject to 

1 2 1
(0) 0, (1) , (0) 0, (1) , (0) 0, (1) .y y y y y y

e e e
′ ′ ′′ ′′= = = = = =

 

The exact solution for the above problem is 3 .xy x e−=  

The proposed method is tested on this problem where the   domain [0, 1] is divided into     10 equal subintervals.  

The obtained numerical results for this problem are given in Table 3. The maximum absolute error obtained by the 

proposed method is 2.533197x10-6. 

Table 3: Numerical Results for Example 3 

x Absolute Error by the Proposed Method 
0.1 3.114110E-08 
0.2 1.401640E-07 
0.3 1.527369E-07 
0.4 3.352761E-08 
0.5 9.238720E-07 
0.6 2.115965E-06 
0.7 2.533197E-06 
0.8 2.190471E-06 
0.9 1.639128E-06 

 
Example 4: Consider the nonlinear boundary value problem 

(6) 2 3 , 0 1x x xy e y e e x− − −+ = + < <            (34) 

subject to 

1 1 1
(0) 1, (1) , (0) 1, (1) , (0) 1, (1) .y y y y y y

e e e

−′ ′ ′′ ′′= = = − = = =  

The exact solution for the above problem is  .xy e−=  

The nonlinear boundary value problem (34) is converted into a sequence of linear boundary value problems 

generated by quasilinearization technique [16] as 

(6) 2 3
( 1) ( ) ( 1) ( )2 , 0,1,2,...x x x x
n n n ny e y y e y e e n− − − −

+ ++ = + + =         (35) 

subject to 
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( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

1 1 1
(0) 0, (1) , (0) 1, (1) , (0) 1, (1) .n n n n n ny y y y y y

e e e+ + + + + +′ ′ ′′ ′′= = = − = − = =  

Here y(n+1) is the (n+1)th approximation for ( ).y x   The domain [0, 1] is divided into 10 equal subintervals and the 

proposed method is applied to the sequence of linear problems (35). The obtained numerical results for this problem are 

presented in Table 4. The maximum absolute error obtained by the proposed method is 2.563000x10-6. 

Table 4: Numerical Results for Example 4 

x Absolute Error by the Proposed Method 
0.1 7.748604E-07 
0.2 4.768372E-07 
0.3 1.132488E-06 
0.4 8.940697E-07 
0.5 1.490116E-06 
0.6 2.563000E-06 
0.7 2.413988E-06 
0.8 1.728535E-06 
0.9 1.102686E-06 

 
Example 5: Consider the nonlinear boundary value problem 

(5) 3 2 2(6) 6si cos(n( ) ), 0 1y y x y yy y x xyπ π ππ π′ ′′′ ′′+ − = − <+ <+        (36) 

subject to 

2 2(0) 1, (1) 1, (0) 0, (1) 0, (0) , (1) .y y y y y yπ π′ ′ ′′ ′′= = − = = = − =  

The exact solution for the above problem is  cos( ).y xπ=  

The nonlinear boundary value problem (36) is converted into a sequence of linear boundary value problems 

generated by quasilinearization technique [16] as 

(5) 3 (5)
( ) ( 1) ( 1) ( ) ( 1) ( ) ( 1)

2 2

(6)
( 1)

2 (5) 6
( ) ( ) ( 1) ( ) ( ) ( ) ( ) ( )

sin( )

(2 0) c ,1,2,o ...s( )

n n n n n n n

n n n n n n n n

n y y x y y y y y

y y

y

ny y y y y y x

π π

π π π π
+ + + + +

+

′ ′′′ ′′ ′+ − + +

′′ ′′ ′+ + = + + =−
     (37) 

subject to 

2 2
( 1) ( 1) ( 1) ( 1) ( 1) ( 1)(0) 1, (1) 1, (0) 0, (1) 0, (0) , (1) .n n n n n ny y y y y yπ π+ + + + + +′ ′ ′′ ′′= = − = = = − =  

Here y(n+1) is the (n+1)th approximation for ( ).y x  The domain [0, 1] is divided into 10 equal subintervals and the 

proposed method is applied to the sequence of linear problems (37). The obtained numerical results for this problem are 

presented in Table 5. The maximum absolute error obtained by the proposed method is 3.288842x10-5. 

Table 5: Numerical Results for Example 5 

x Absolute Error by the Proposed Method 
0.1 4.172325E-07 
0.2 9.536743E-06 
0.3 2.193451E-05 
0.4 3.221631E-05 
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Table 5: Contd., 
0.5 3.288842E-05 
0.6 2.413988E-05 
0.7 1.323223E-05 
0.8 3.933907E-06 
0.9 7.748604E-07 

 
Example 6: Consider the nonlinear boundary value problem 

(6) 36 620 40(1 ) , 0 1yy e x x− −− = − + < <           (38) 

subject to 

ln 2 1 1 1
(0) 0, (1) , (1) , (0) , (1) .

6 12

1
(0) ,

6 6 24
y y y y yy ′ ′′ ′′= = = − = −′ = =

 

The exact solution for the above problem is 
ln(1 )

6

x
y

+= . 

The nonlinear boundary value problem (38) is converted into a sequence of linear boundary value problems 

generated by quasilinearization technique [16] as 

( ) ( ) ( )36 36 36(6) 6
( 1) ( 1) ( )720 720 20 40(1 ) , 0,1,2,...n n ny y y
n n ny e y e y e x n− − − −

+ ++ = + − + =      (39) 

subject to 

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

ln 2 1 1 1 1
(0) 0, (1) , (0) , (1) , (0) , (1) .

6 6 12 6 24n n n n n ny y y y y y+ + + + + +′ ′ ′′ ′′= = = = = − = −
 

Here y(n+1) is the (n+1)th approximation for y(x). The domain [0, 1] is divided into 10 equal subintervals and the 

proposed method is applied to the sequence of linear problems (39). The obtained numerical results for this problem are 

presented in Table 6. The maximum absolute error obtained by the proposed method is 6.780028x10-07. 

Table 6: Numerical Results for Example 6 

x Absolute Error by the Proposed Method Proposed Method 
0.1 1.303852E-08 
0.2 1.676381E-08 
0.3 6.705523E-08 
0.4 1.192093E-07 
0.5 3.725290E-07 
0.6 6.780028E-07 
0.7 6.854534E-07 
0.8 5.066395E-07 
0.9 3.427267E-07 

 
CONCLUSIONS 

In this paper, we have employed a Petrov-Galerkin method with quintic B-splines as basis functions and septic          

B-splines as weight functions to solve a general sixth order boundary value problems with special case of boundary 

conditions. The quintic B-spline basis set has been redefined into a new set of basis functions which vanish on the 

boundary where the Dirichlet and the Neumann boundary conditions are prescribed. The septic B-splines are redefined into 
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a new set of weight functions which in number match the number of redefined set of basis functions. The proposed method 

has been tested on three linear and three nonlinear sixth order boundary value problems. The numerical results obtained by 

the proposed method are in good agreement with the exact solutions available in the literature. The strength of the 

proposed method lies in its easy applicability, accurate and efficient to solve sixth order boundary value problems. 
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